Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.937
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732031

ABSTRACT

Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , Peptide Elongation Factor 1 , Muscle Development/genetics , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Animals , Mice , Cell Proliferation/genetics , Cell Differentiation/genetics , Myoblasts/metabolism , Myoblasts/cytology , CRISPR-Cas Systems , Cell Line , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
2.
PLoS One ; 19(5): e0301690, 2024.
Article in English | MEDLINE | ID: mdl-38701072

ABSTRACT

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Subject(s)
Muscle Development , Sarcomeres , Animals , Mice , Cell Differentiation/genetics , Cell Line , Epigenesis, Genetic , Gene Knockout Techniques , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histones/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/cytology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Sarcomeres/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
3.
Commun Biol ; 7(1): 518, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698103

ABSTRACT

Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.


Subject(s)
Chickens , Gene Expression Profiling , MicroRNAs , Muscle Development , RNA, Long Noncoding , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development/genetics , Chickens/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , Cell Proliferation , Myoblasts/metabolism , Myoblasts/cytology , Chick Embryo
4.
Cells ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667303

ABSTRACT

Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.


Subject(s)
Muscle, Skeletal , Myoblasts , Tissue Engineering , Tissue Scaffolds , Animals , Cattle , Tissue Scaffolds/chemistry , Muscle, Skeletal/cytology , Tissue Engineering/methods , Myoblasts/cytology , Biocompatible Materials/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Cells, Cultured , Cell Proliferation , Extracellular Matrix/metabolism
5.
Cells ; 13(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667334

ABSTRACT

Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.


Subject(s)
LIM Domain Proteins , Muscle Development , Animals , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Swine , Cell Proliferation/genetics , Cell Differentiation/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Polymorphism, Single Nucleotide/genetics , Myoblasts/metabolism , Myoblasts/cytology , Promoter Regions, Genetic/genetics
6.
BMC Biotechnol ; 24(1): 23, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671404

ABSTRACT

Volumetric loss is one of the challenging issues in muscle tissue structure that causes functio laesa. Tissue engineering of muscle tissue using suitable hydrogels is an alternative to restoring the physiological properties of the injured area. Here, myogenic properties of type I collagen (0.5%) and keratin (0.5%) were investigated in a mouse model of biceps femoris injury. Using FTIR, gelation time, and rheological analysis, the physicochemical properties of the collagen (Col)/Keratin scaffold were analyzed. Mouse C2C12 myoblast-laden Col/Keratin hydrogels were injected into the injury site and histological examination plus western blotting were performed to measure myogenic potential after 15 days. FTIR indicated an appropriate interaction between keratin and collagen. The blend of Col/Keratin delayed gelation time when compared to the collagen alone group. Rheological analysis revealed decreased stiffening in blended Col/Keratin hydrogel which is favorable for the extrudability of the hydrogel. Transplantation of C2C12 myoblast-laden Col/Keratin hydrogel to injured muscle tissues led to the formation of newly generated myofibers compared to cell-free hydrogel and collagen groups (p < 0.05). In the C2C12 myoblast-laden Col/Keratin group, a low number of CD31+ cells with minimum inflammatory cells was evident. Western blotting indicated the promotion of MyoD in mice that received cell-laden Col/Keratin hydrogel compared to the other groups (p < 0.05). Despite the increase of the myosin cell-laden Col/Keratin hydrogel group, no significant differences were obtained related to other groups (p > 0.05). The blend of Col/Keratin loaded with myoblasts provides a suitable myogenic platform for the alleviation of injured muscle tissue.


Subject(s)
Keratins , Muscle Development , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Keratins/metabolism , Cell Line , Hydrogels/chemistry , Neovascularization, Physiologic/drug effects , Tissue Engineering/methods , Disease Models, Animal , Collagen/metabolism , Myoblasts/metabolism , Myoblasts/cytology , Male , Tissue Scaffolds/chemistry , Angiogenesis
7.
Matrix Biol ; 129: 44-58, 2024 May.
Article in English | MEDLINE | ID: mdl-38582404

ABSTRACT

Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.


Subject(s)
Cell Differentiation , Cell Movement , Dysferlin , Extracellular Matrix , Myoblasts , Sarcoglycans , Animals , Myoblasts/metabolism , Myoblasts/cytology , Extracellular Matrix/metabolism , Mice , Sarcoglycans/genetics , Sarcoglycans/metabolism , Dysferlin/genetics , Dysferlin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Dystrophin/genetics , Dystrophin/metabolism , Annexin A2/genetics , Annexin A2/metabolism , Decorin/genetics , Decorin/metabolism , Cell Line , Disease Models, Animal , Muscle, Skeletal/metabolism
8.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673893

ABSTRACT

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Subject(s)
Cell Proliferation , Fibroblast Growth Factor 2 , Muscle Development , MyoD Protein , Myoblasts , Muscle Development/genetics , Animals , Mice , MyoD Protein/metabolism , MyoD Protein/genetics , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Cell Differentiation , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
9.
Int J Biol Macromol ; 266(Pt 2): 131049, 2024 May.
Article in English | MEDLINE | ID: mdl-38522687

ABSTRACT

Long non-coding RNAs (lncRNAs) play an essential role in vertebrate myogenesis and muscle diseases. However, the dynamic expression patterns, biological functions, and mechanisms of lncRNAs in skeletal muscle development and regeneration remain largely unknown. In this study, a novel lncRNA (named lncMGR) was differentially expressed during breast muscle development in fast- and slow-growing chickens. Functionally, lncMGR promoted myoblast differentiation, inhibited myoblast proliferation in vitro, and promoted myofiber hypertrophy and injury repair in vivo. Mechanistically, lncMGR increased the mRNA and protein expression of skeletal muscle myosin heavy chain 1 A (MYH1A) via both transcriptional and post-transcriptional regulation. Nuclear lncMGR recruited cyclin-dependent kinase 9 (CDK9) to the core transcriptional activation region of the MYH1A gene to activate MYH1A transcription. Cytoplasmic lncMGR served as a competitive endogenous RNA (ceRNA) to competitively absorb miR-2131-5p away from MYH1A and subsequently protected the MYH1A from miR-2131-5p-mediated degradation. Besides miR-2131-5p, cytoplasmic lncMGR could also sponge miR-143-3p to reconcile the antagonist between the miR-2131-5p/MYH1A-mediated inhibition effects and miR-143-3p-mediated promotion effects on myoblast proliferation, thereby inhibiting myoblast proliferation. Collectively, lncMGR could recruit CDK9 and sponge multiple miRNAs to regulate skeletal muscle development and regeneration, and could be a therapeutic target for muscle diseases.


Subject(s)
Chickens , MicroRNAs , Muscle Development , RNA, Long Noncoding , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Myoblasts/metabolism , Myoblasts/cytology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Regeneration/genetics , RNA, Long Noncoding/genetics
10.
Yi Chuan ; 45(5): 435-446, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37194590

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules about 22 nucleotides in length and are encoded by endogenous genes, and are involved in the regulation of post-transcriptional gene expression in animals and plants. Many studies have shown that microRNAs regulate the development of skeletal muscle, mainly manifested in the activation of muscle satellite cells and biological processes such as proliferation, differentiation, and formation of muscle tubes. In this study, miRNA sequencing screening of longissimus dorsi (LD, mainly fast-twitch fibers) and soleus muscle (Sol, dominated by slow-twitch fibers) identified the miR-196b-5p as a differentially expressed and highly conserved sequence in different skeletal muscles. Studies of miR-196b-5p in skeletal muscle have not been reported. In this study, miR-196b-5p mimics and inhibitor were used in miR-196b-5p overexpression and interference experiments in C2C12 cells. The effect of miR-196b-5p on myoblast proliferation and differentiation was analyzed by western blotting, real-time quantitative RT-PCR, flow cytometry, immunofluorescence staining, and the target gene of miR-196b-5p was identified by bioinformatics prediction and analyzed by dual luciferase reporter assays. The results showed that overexpression of miR-196b-5p could significantly increase the mRNA and protein expression of Cyclin B, Cyclin D and Cyclin E (P<0.05); Cell cycle analysis showed that overexpression of miR-196b-5p significantly increased the proportion of cells in the S phase (P<0.05), indicating that miR-196b-5p could accelerate cell cycle progress. Results of EdU staining showed that overexpression of miR-196b-5p significantly promoted cell proliferation. Conversely, inhibition of miR-196b-5p expression could significantly reduce the proliferation capacity of myoblasts. Further, overexpression of miR-196b-5p could significantly increase the expression levels of myogenic marker genes MyoD, MoyG and MyHC (P<0.05), thereby promoting myoblast fusion and accelerating C2C12 cell differentiation. Bioinformatics predictions and dual luciferase experiments demonstrated that miR-196b-5p could target and inhibit the expression of the Sirt1 gene. Altering the Sirt1 expression could not rescue the effects of miR-196b-5p on the cell cycle, but could weaken the promoting effects of miR-196b-5p on myoblast differentiation, suggesting that miR-196b-5p promoted myoblast differentiation by targeting Sirt1.


Subject(s)
Cell Differentiation , Cell Proliferation , Myoblasts , Animals , Mice , Cell Line , MicroRNAs/genetics , Myoblasts/cytology , Myoblasts/metabolism
11.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835542

ABSTRACT

Skeletal muscle is the most abundant tissue in mammals, and myogenesis and differentiation require a series of regulatory factors such as microRNAs (miRNAs). In this study, we found that miR-103-3p was highly expressed in the skeletal muscle of mice, and the effects of miR-103-3p on skeletal muscle development were explored using myoblast C2C12 cells as a model. The results showed that miR-103-3p could significantly reduce myotube formation and restrain the differentiation of C2C12 cells. Additionally, miR-103-3p obviously prevented the production of autolysosomes and inhibited the autophagy of C2C12 cells. Moreover, bioinformatics prediction and dual-luciferase reporter assays confirmed that miR-103-3p could directly target the microtubule-associated protein 4 (MAP4) gene. The effects of MAP4 on the differentiation and autophagy of myoblasts were then elucidated. MAP4 promoted both the differentiation and autophagy of C2C12 cells, which was contrary to the role of miR-103-3p. Further research revealed that MAP4 colocalized with LC3 in C2C12 cell cytoplasm, and the immunoprecipitation assay showed that MAP4 interacted with autophagy marker LC3 to regulate the autophagy of C2C12 cells. Overall, these results indicated that miR-103-3p regulated the differentiation and autophagy of myoblasts by targeting MAP4. These findings enrich the understanding of the regulatory network of miRNAs involved in the myogenesis of skeletal muscle.


Subject(s)
Cell Differentiation , MicroRNAs , Microtubule-Associated Proteins , Myoblasts , Animals , Mice , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins/metabolism , Muscle Development , Myoblasts/cytology
12.
Nucleic Acids Res ; 50(22): 13026-13044, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36533518

ABSTRACT

The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein L , Muscle Development , Promoter Regions, Genetic , RNA, Long Noncoding , Transcription, Genetic , Humans , Heterogeneous-Nuclear Ribonucleoprotein L/genetics , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic/genetics , Gene Silencing , Protein Transport/genetics
13.
J Biol Chem ; 298(8): 102149, 2022 08.
Article in English | MEDLINE | ID: mdl-35787372

ABSTRACT

Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.


Subject(s)
Cell Differentiation , Chromatin , Enhancer Elements, Genetic , Muscle Development , Myoblasts , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , Histone Code , Mice , Muscle Development/genetics , Muscle Fibers, Skeletal , Myoblasts/cytology
14.
Cell Rep ; 39(10): 110927, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675771

ABSTRACT

Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.


Subject(s)
DEAD-box RNA Helicases , G-Quadruplexes , Molecular Chaperones , Muscle Development , Myoblasts , RNA, Long Noncoding , 5' Untranslated Regions , Animals , Cell Proliferation , DEAD-box RNA Helicases/metabolism , Mice , Molecular Chaperones/metabolism , Muscles/metabolism , Myoblasts/cytology , RNA, Long Noncoding/metabolism , Regeneration
15.
PLoS One ; 17(4): e0266609, 2022.
Article in English | MEDLINE | ID: mdl-35395037

ABSTRACT

OBJECTIVE: Stem cell therapy is a promising approach for diabetes via promoting the differentiation of insulin-producing cells (IPCs). This study aimed to screen the differentially expressed miRNAs (DEmiRNAs) during the differentiation of muscle-derived stem cells (MDSCs) into IPCs, and uncover the underlying function and mechanism of a specific DEmiRNA, miR-708-5p. METHODS: MDSCs were successfully isolated from the leg muscle of rats, and were induced for IPCs differentiation through a five-stage protocol. miRNA microarray assay was performed for screening DEmiRNAs during differentiation. The features of MDSCs-derived IPCs were identified by qRT-PCR, flow cytometry, and immunofluorescence staining. The targeting of STK4 by miR-708-5p was examined by luciferase assay. The protein expression of STK4, YAP1, and p-YAP1 was determined by Western blot and immunofluorescence staining. RESULTS: MDSCs were successfully isolated and differentiated into IPCs. A total of 12 common DEmiRNAs were obtained during five-stage differentiation. Among them, miR-708-5p that highly expressed in MDSCs-derived IPCs was selected. Overexpression of miR-708-5p upregulated some key transcription factors (Pdx1, Ngn3, Nkx2.2, Nkx6.1, Gata4, Gata6, Pax4, and Pax6) involving in IPCs differentiation, and increased insulin positive cells. In addition, STK4 was identified as the target gene of miR-708-5p. miR-708-5p overexpression downregulated the expression of STK4 and the downstream phosphorylated YAP1. CONCLUSIONS: There were 12 DEmiRNAs involved in the differentiation of MDSCs into IPCs. miR-708-5p promoted MDSCs differentiation into IPCs probably by targeting STK4-mediated Hippo-YAP1 signaling pathway.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells , MicroRNAs , Myoblasts , Protein Serine-Threonine Kinases , Stem Cells , Animals , Cell Differentiation/genetics , Insulin , Insulin-Secreting Cells/cytology , MicroRNAs/genetics , Muscles/metabolism , Myoblasts/cytology , Protein Serine-Threonine Kinases/genetics , Rats , Stem Cells/cytology
16.
FASEB J ; 36(3): e22192, 2022 03.
Article in English | MEDLINE | ID: mdl-35174906

ABSTRACT

Modulating the number of muscle stems cells, called satellite cells, during early postnatal development produces long-term effects on muscle growth. We tested the hypothesis that high expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our findings show that elevated klotho expression caused a transient increase in satellite cell numbers and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, which was associated with a delay in muscle differentiation. In addition, Klotho stimulation and Jmjd3 downregulation produced similar but not additive reductions in the expression of Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a common pathway. Together, our results identify a novel pathway through which Klotho influences myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt genes and inhibition of canonical Wnt signaling.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/genetics , Klotho Proteins/metabolism , Muscle Development , Myoblasts/metabolism , Animals , Cell Line , Down-Regulation , Gene Expression Regulation, Developmental , Jumonji Domain-Containing Histone Demethylases/metabolism , Klotho Proteins/genetics , Mice , Mice, Inbred C57BL , Myoblasts/cytology , Wnt Signaling Pathway
17.
Sci Rep ; 12(1): 2841, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181706

ABSTRACT

Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of É£-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.


Subject(s)
Cell Culture Techniques , Cell Differentiation/genetics , PAX3 Transcription Factor/genetics , Surface Properties , Animals , Cell Proliferation/drug effects , Gene Expression Regulation, Developmental/drug effects , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Myoblasts/cytology , Myoblasts/metabolism , RNA-Seq , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/drug effects , Single-Cell Analysis
18.
Cell Mol Life Sci ; 79(2): 122, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35128576

ABSTRACT

Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.


Subject(s)
Actins/metabolism , Rhabdomyosarcoma/pathology , Syndecan-4/metabolism , rac1 GTP-Binding Protein/metabolism , Actin Cytoskeleton , Animals , Cell Differentiation , Cell Line , DNA Copy Number Variations , Humans , Male , Mice , Muscle Development , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Rhabdomyosarcoma/metabolism , Syndecan-4/antagonists & inhibitors , Syndecan-4/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
19.
Cell Prolif ; 55(3): e13183, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35137485

ABSTRACT

OBJECTIVE: Paravertebral muscle asymmetry may be involved in the pathogenesis of adolescent idiopathic scoliosis (AIS), and the Tent5a protein was recently identified as a novel active noncanonical poly(A) polymerase. We, therefore, explored the function of the AIS susceptibility gene Tent5a in myoblasts. MATERIALS AND METHODS: RNA-seq of AIS paravertebral muscle was performed, and the molecular differences in paravertebral muscle were investigated. Twenty-four AIS susceptibility genes were screened, and differential expression of Tent5a in paravertebral muscles was confirmed with qPCR and Western blot. After the knockdown of Tent5a, the functional effects of Tent5a on C2C12 cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 assay, wound-healing assay, and TUNEL assay, respectively. Myogenic differentiation markers were tested with immunofluorescence and qPCR in vitro, and muscle fiber formation was compared in vivo. RESULTS: The AIS susceptibility gene Tent5a was differentially expressed in AIS paravertebral muscles. Tent5a knockdown inhibited the proliferation and migration of C2C12 cells and inhibited the maturation of type I muscle fibers in vitro and in vivo. Mechanistically, the expression of myogenin was decreased along with the suppression of Tent5a. CONCLUSIONS: Tent5a plays an important role in the proliferation and migration of myoblasts, and it regulates muscle fiber maturation by maintaining the stability of myogenin. Tent5a may be involved in the pathogenesis of AIS by regulating the formation of muscle fiber type I.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myogenin/metabolism , Polynucleotide Adenylyltransferase/metabolism , Adolescent , Cell Differentiation/genetics , Child , Female , Gene Expression/physiology , Humans , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Myogenin/genetics , RNA, Messenger/metabolism , Scoliosis/genetics
20.
Biochem Biophys Res Commun ; 599: 17-23, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35168059

ABSTRACT

Actin cytoskeletal dynamics play a critical role in the regulation of myogenesis through mechanotransduction, Hippo signaling modulation, cell proliferation, and morphological changes. Although Twinfilin-1 (TWF1), a highly conserved actin-depolymerizing factor, is known to regulate actin filament assembly by sequestering actin monomer and capping barbed ends, the biological significance of TWF1 during the differentiation of myogenic progenitor cells has not been investigated. In this study, we unveiled the roles played by TWF1 in the proliferation and differentiation of C2C12 myoblasts. TWF1 was the predominant isoform in myoblasts, and its expression was induced during the early stage of differentiation. Knockdown of TWF1 by siRNA (siTWF1) induced the accumulation of actin filaments (F-actin) and promoted the nuclear translocation of Yes-associated protein (YAP) in the Hippo signaling pathway. TWF1 depletion activated transcription of YAP target genes and induced cell cycle and proliferation in myoblasts. Furthermore, TWF1 knockdown markedly reduced the expressions of myogenic regulatory factors, such as MyoD and MyoG, and drastically hindered myoblast differentiation, fusion, and myotube formation. Collectively, this study highlights the essential role of TWF1 in the myogenic differentiation of progenitor cells via modulation of F-actin and YAP, and suggests TWF1 as a potential therapeutic target for muscle wasting and myopathies.


Subject(s)
Microfilament Proteins/metabolism , Myoblasts/cytology , YAP-Signaling Proteins/metabolism , Actins/metabolism , Active Transport, Cell Nucleus/genetics , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cell Proliferation/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Mice , Microfilament Proteins/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts/physiology , YAP-Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...